Back to home page

Bitcoin sources

 
 

    


File indexing completed on 2020-06-25 15:50:44

0001 // Copyright (c) 2009-2010 Satoshi Nakamoto
0002 // Copyright (c) 2009-2012 The Bitcoin developers
0003 // Distributed under the MIT/X11 software license, see the accompanying
0004 // file license.txt or http://www.opensource.org/licenses/mit-license.php.
0005 #ifndef BITCOIN_KEY_H
0006 #define BITCOIN_KEY_H
0007 
0008 #include <stdexcept>
0009 #include <vector>
0010 
0011 #include <openssl/ec.h>
0012 #include <openssl/ecdsa.h>
0013 #include <openssl/obj_mac.h>
0014 
0015 #include "serialize.h"
0016 #include "uint256.h"
0017 #include "base58.h"
0018 
0019 // secp160k1
0020 // const unsigned int PRIVATE_KEY_SIZE = 192;
0021 // const unsigned int PUBLIC_KEY_SIZE  = 41;
0022 // const unsigned int SIGNATURE_SIZE   = 48;
0023 //
0024 // secp192k1
0025 // const unsigned int PRIVATE_KEY_SIZE = 222;
0026 // const unsigned int PUBLIC_KEY_SIZE  = 49;
0027 // const unsigned int SIGNATURE_SIZE   = 57;
0028 //
0029 // secp224k1
0030 // const unsigned int PRIVATE_KEY_SIZE = 250;
0031 // const unsigned int PUBLIC_KEY_SIZE  = 57;
0032 // const unsigned int SIGNATURE_SIZE   = 66;
0033 //
0034 // secp256k1:
0035 // const unsigned int PRIVATE_KEY_SIZE = 279;
0036 // const unsigned int PUBLIC_KEY_SIZE  = 65;
0037 // const unsigned int SIGNATURE_SIZE   = 72;
0038 //
0039 // see www.keylength.com
0040 // script supports up to 75 for single byte push
0041 
0042 // Generate a private key from just the secret parameter
0043 int static inline EC_KEY_regenerate_key(EC_KEY *eckey, BIGNUM *priv_key)
0044 {
0045     int ok = 0;
0046     BN_CTX *ctx = NULL;
0047     EC_POINT *pub_key = NULL;
0048 
0049     if (!eckey) return 0;
0050 
0051     const EC_GROUP *group = EC_KEY_get0_group(eckey);
0052 
0053     if ((ctx = BN_CTX_new()) == NULL)
0054         goto err;
0055 
0056     pub_key = EC_POINT_new(group);
0057 
0058     if (pub_key == NULL)
0059         goto err;
0060 
0061     if (!EC_POINT_mul(group, pub_key, priv_key, NULL, NULL, ctx))
0062         goto err;
0063 
0064     EC_KEY_set_private_key(eckey,priv_key);
0065     EC_KEY_set_public_key(eckey,pub_key);
0066 
0067     ok = 1;
0068 
0069 err:
0070 
0071     if (pub_key)
0072         EC_POINT_free(pub_key);
0073     if (ctx != NULL)
0074         BN_CTX_free(ctx);
0075 
0076     return(ok);
0077 }
0078 
0079 // Perform ECDSA key recovery (see SEC1 4.1.6) for curves over (mod p)-fields
0080 // recid selects which key is recovered
0081 // if check is nonzero, additional checks are performed
0082 int static inline ECDSA_SIG_recover_key_GFp(EC_KEY *eckey, ECDSA_SIG *ecsig, const unsigned char *msg, int msglen, int recid, int check)
0083 {
0084     if (!eckey) return 0;
0085 
0086     int ret = 0;
0087     BN_CTX *ctx = NULL;
0088 
0089     BIGNUM *x = NULL;
0090     BIGNUM *e = NULL;
0091     BIGNUM *order = NULL;
0092     BIGNUM *sor = NULL;
0093     BIGNUM *eor = NULL;
0094     BIGNUM *field = NULL;
0095     EC_POINT *R = NULL;
0096     EC_POINT *O = NULL;
0097     EC_POINT *Q = NULL;
0098     BIGNUM *rr = NULL;
0099     BIGNUM *zero = NULL;
0100     int n = 0;
0101     int i = recid / 2;
0102 
0103     const EC_GROUP *group = EC_KEY_get0_group(eckey);
0104     if ((ctx = BN_CTX_new()) == NULL) { ret = -1; goto err; }
0105     BN_CTX_start(ctx);
0106     order = BN_CTX_get(ctx);
0107     if (!EC_GROUP_get_order(group, order, ctx)) { ret = -2; goto err; }
0108     x = BN_CTX_get(ctx);
0109     if (!BN_copy(x, order)) { ret=-1; goto err; }
0110     if (!BN_mul_word(x, i)) { ret=-1; goto err; }
0111     if (!BN_add(x, x, ecsig->r)) { ret=-1; goto err; }
0112     field = BN_CTX_get(ctx);
0113     if (!EC_GROUP_get_curve_GFp(group, field, NULL, NULL, ctx)) { ret=-2; goto err; }
0114     if (BN_cmp(x, field) >= 0) { ret=0; goto err; }
0115     if ((R = EC_POINT_new(group)) == NULL) { ret = -2; goto err; }
0116     if (!EC_POINT_set_compressed_coordinates_GFp(group, R, x, recid % 2, ctx)) { ret=0; goto err; }
0117     if (check)
0118     {
0119         if ((O = EC_POINT_new(group)) == NULL) { ret = -2; goto err; }
0120         if (!EC_POINT_mul(group, O, NULL, R, order, ctx)) { ret=-2; goto err; }
0121         if (!EC_POINT_is_at_infinity(group, O)) { ret = 0; goto err; }
0122     }
0123     if ((Q = EC_POINT_new(group)) == NULL) { ret = -2; goto err; }
0124     n = EC_GROUP_get_degree(group);
0125     e = BN_CTX_get(ctx);
0126     if (!BN_bin2bn(msg, msglen, e)) { ret=-1; goto err; }
0127     if (8*msglen > n) BN_rshift(e, e, 8-(n & 7));
0128     zero = BN_CTX_get(ctx);
0129     if (!BN_zero(zero)) { ret=-1; goto err; }
0130     if (!BN_mod_sub(e, zero, e, order, ctx)) { ret=-1; goto err; }
0131     rr = BN_CTX_get(ctx);
0132     if (!BN_mod_inverse(rr, ecsig->r, order, ctx)) { ret=-1; goto err; }
0133     sor = BN_CTX_get(ctx);
0134     if (!BN_mod_mul(sor, ecsig->s, rr, order, ctx)) { ret=-1; goto err; }
0135     eor = BN_CTX_get(ctx);
0136     if (!BN_mod_mul(eor, e, rr, order, ctx)) { ret=-1; goto err; }
0137     if (!EC_POINT_mul(group, Q, eor, R, sor, ctx)) { ret=-2; goto err; }
0138     if (!EC_KEY_set_public_key(eckey, Q)) { ret=-2; goto err; }
0139 
0140     ret = 1;
0141 
0142 err:
0143     if (ctx) {
0144         BN_CTX_end(ctx);
0145         BN_CTX_free(ctx);
0146     }
0147     if (R != NULL) EC_POINT_free(R);
0148     if (O != NULL) EC_POINT_free(O);
0149     if (Q != NULL) EC_POINT_free(Q);
0150     return ret;
0151 }
0152 
0153 class key_error : public std::runtime_error
0154 {
0155 public:
0156     explicit key_error(const std::string& str) : std::runtime_error(str) {}
0157 };
0158 
0159 
0160 // secure_allocator is defined in serialize.h
0161 // CPrivKey is a serialized private key, with all parameters included (279 bytes)
0162 typedef std::vector<unsigned char, secure_allocator<unsigned char> > CPrivKey;
0163 // CSecret is a serialization of just the secret parameter (32 bytes)
0164 typedef std::vector<unsigned char, secure_allocator<unsigned char> > CSecret;
0165 
0166 class CKey
0167 {
0168 protected:
0169     EC_KEY* pkey;
0170     bool fSet;
0171 
0172 public:
0173     CKey()
0174     {
0175         pkey = EC_KEY_new_by_curve_name(NID_secp256k1);
0176         if (pkey == NULL)
0177             throw key_error("CKey::CKey() : EC_KEY_new_by_curve_name failed");
0178         fSet = false;
0179     }
0180 
0181     CKey(const CKey& b)
0182     {
0183         pkey = EC_KEY_dup(b.pkey);
0184         if (pkey == NULL)
0185             throw key_error("CKey::CKey(const CKey&) : EC_KEY_dup failed");
0186         fSet = b.fSet;
0187     }
0188 
0189     CKey& operator=(const CKey& b)
0190     {
0191         if (!EC_KEY_copy(pkey, b.pkey))
0192             throw key_error("CKey::operator=(const CKey&) : EC_KEY_copy failed");
0193         fSet = b.fSet;
0194         return (*this);
0195     }
0196 
0197     ~CKey()
0198     {
0199         EC_KEY_free(pkey);
0200     }
0201 
0202     bool IsNull() const
0203     {
0204         return !fSet;
0205     }
0206 
0207     void MakeNewKey()
0208     {
0209         if (!EC_KEY_generate_key(pkey))
0210             throw key_error("CKey::MakeNewKey() : EC_KEY_generate_key failed");
0211         fSet = true;
0212     }
0213 
0214     bool SetPrivKey(const CPrivKey& vchPrivKey)
0215     {
0216         const unsigned char* pbegin = &vchPrivKey[0];
0217         if (!d2i_ECPrivateKey(&pkey, &pbegin, vchPrivKey.size()))
0218             return false;
0219         fSet = true;
0220         return true;
0221     }
0222 
0223     bool SetSecret(const CSecret& vchSecret)
0224     {
0225         EC_KEY_free(pkey);
0226         pkey = EC_KEY_new_by_curve_name(NID_secp256k1);
0227         if (pkey == NULL)
0228             throw key_error("CKey::SetSecret() : EC_KEY_new_by_curve_name failed");
0229         if (vchSecret.size() != 32)
0230             throw key_error("CKey::SetSecret() : secret must be 32 bytes");
0231         BIGNUM *bn = BN_bin2bn(&vchSecret[0],32,BN_new());
0232         if (bn == NULL)
0233             throw key_error("CKey::SetSecret() : BN_bin2bn failed");
0234         if (!EC_KEY_regenerate_key(pkey,bn))
0235         {
0236             BN_clear_free(bn);
0237             throw key_error("CKey::SetSecret() : EC_KEY_regenerate_key failed");
0238         }
0239         BN_clear_free(bn);
0240         fSet = true;
0241         return true;
0242     }
0243 
0244     CSecret GetSecret() const
0245     {
0246         CSecret vchRet;
0247         vchRet.resize(32);
0248         const BIGNUM *bn = EC_KEY_get0_private_key(pkey);
0249         int nBytes = BN_num_bytes(bn);
0250         if (bn == NULL)
0251             throw key_error("CKey::GetSecret() : EC_KEY_get0_private_key failed");
0252         int n=BN_bn2bin(bn,&vchRet[32 - nBytes]);
0253         if (n != nBytes) 
0254             throw key_error("CKey::GetSecret(): BN_bn2bin failed");
0255         return vchRet;
0256     }
0257 
0258     CPrivKey GetPrivKey() const
0259     {
0260         unsigned int nSize = i2d_ECPrivateKey(pkey, NULL);
0261         if (!nSize)
0262             throw key_error("CKey::GetPrivKey() : i2d_ECPrivateKey failed");
0263         CPrivKey vchPrivKey(nSize, 0);
0264         unsigned char* pbegin = &vchPrivKey[0];
0265         if (i2d_ECPrivateKey(pkey, &pbegin) != nSize)
0266             throw key_error("CKey::GetPrivKey() : i2d_ECPrivateKey returned unexpected size");
0267         return vchPrivKey;
0268     }
0269 
0270     bool SetPubKey(const std::vector<unsigned char>& vchPubKey)
0271     {
0272         const unsigned char* pbegin = &vchPubKey[0];
0273         if (!o2i_ECPublicKey(&pkey, &pbegin, vchPubKey.size()))
0274             return false;
0275         fSet = true;
0276         return true;
0277     }
0278 
0279     std::vector<unsigned char> GetPubKey() const
0280     {
0281         unsigned int nSize = i2o_ECPublicKey(pkey, NULL);
0282         if (!nSize)
0283             throw key_error("CKey::GetPubKey() : i2o_ECPublicKey failed");
0284         std::vector<unsigned char> vchPubKey(nSize, 0);
0285         unsigned char* pbegin = &vchPubKey[0];
0286         if (i2o_ECPublicKey(pkey, &pbegin) != nSize)
0287             throw key_error("CKey::GetPubKey() : i2o_ECPublicKey returned unexpected size");
0288         return vchPubKey;
0289     }
0290 
0291     bool Sign(uint256 hash, std::vector<unsigned char>& vchSig)
0292     {
0293         vchSig.clear();
0294         ECDSA_SIG *sig = ECDSA_do_sign((unsigned char *) &hash, sizeof(hash), pkey);
0295 
0296         if (sig == NULL)
0297         {
0298             printf("ERROR, ECDSA_sign failed in key.h:Sign()\n");
0299             return false;
0300         }
0301 
0302         BN_CTX *ctx = BN_CTX_new();
0303         BN_CTX_start(ctx);
0304         const EC_GROUP *group = EC_KEY_get0_group(pkey);
0305         BIGNUM *order = BN_CTX_get(ctx);
0306         BIGNUM *halforder = BN_CTX_get(ctx);
0307         EC_GROUP_get_order(group, order, ctx);
0308         BN_rshift1(halforder, order);
0309 
0310         if (fHighS && (BN_cmp(sig->s, halforder) < 0))
0311         {
0312             // enforce high S values
0313             BN_sub(sig->s, order, sig->s);
0314         }
0315 
0316         if (fLowS && (BN_cmp(sig->s, halforder) > 0))
0317         {
0318             // enforce low S values
0319             BN_sub(sig->s, order, sig->s);
0320         }
0321 
0322         BN_CTX_end(ctx);
0323         BN_CTX_free(ctx);
0324         unsigned int nSize = ECDSA_size(pkey);
0325         vchSig.resize(nSize); // Make sure it is big enough
0326         unsigned char *pos = &vchSig[0];
0327         nSize = i2d_ECDSA_SIG(sig, &pos);
0328         //printf("DEBUG DER R: 0x%s\n", BN_bn2hex(sig->r));
0329         //printf("DEBUG DER R:   %s\n", BN_bn2dec(sig->r));
0330         //printf("DEBUG DER S: 0x%s\n", BN_bn2hex(sig->s));
0331         //printf("DEBUG DER S:   %s\n", BN_bn2dec(sig->s));
0332         ECDSA_SIG_free(sig);
0333         vchSig.resize(nSize); // Shrink to fit actual size
0334         return true;
0335     }
0336 
0337     // create a compact signature (65 bytes), which allows reconstructing the used public key
0338     // The format is one header byte, followed by two times 32 bytes for the serialized r and s values.
0339     // The header byte: 0x1B = first key with even y, 0x1C = first key with odd y,
0340     //                  0x1D = second key with even y, 0x1E = second key with odd y
0341     bool SignCompact(uint256 hash, std::vector<unsigned char>& vchSig)
0342     {
0343         bool fOk = false;
0344         ECDSA_SIG *sig = ECDSA_do_sign((unsigned char*)&hash, sizeof(hash), pkey);
0345         if (sig==NULL)
0346             return false;
0347         vchSig.clear();
0348         vchSig.resize(65,0);
0349         int nBitsR = BN_num_bits(sig->r);
0350         int nBitsS = BN_num_bits(sig->s);
0351         if (nBitsR <= 256 && nBitsS <= 256)
0352         {
0353             int nRecId = -1;
0354             for (int i=0; i<4; i++)
0355             {
0356                 CKey keyRec;
0357                 keyRec.fSet = true;
0358                 if (ECDSA_SIG_recover_key_GFp(keyRec.pkey, sig, (unsigned char*)&hash, sizeof(hash), i, 1) == 1)
0359                     if (keyRec.GetPubKey() == this->GetPubKey())
0360                     {
0361                         nRecId = i;
0362                         break;
0363                     }
0364             }
0365 
0366             if (nRecId == -1)
0367                 throw key_error("CKey::SignCompact() : unable to construct recoverable key");
0368 
0369             vchSig[0] = nRecId+27;
0370             BN_bn2bin(sig->r,&vchSig[33-(nBitsR+7)/8]);
0371             BN_bn2bin(sig->s,&vchSig[65-(nBitsS+7)/8]);
0372             fOk = true;
0373         }
0374         ECDSA_SIG_free(sig);
0375         return fOk;
0376     }
0377 
0378     // reconstruct public key from a compact signature
0379     // This is only slightly more CPU intensive than just verifying it.
0380     // If this function succeeds, the recovered public key is guaranteed to be valid
0381     // (the signature is a valid signature of the given data for that key)
0382     bool SetCompactSignature(uint256 hash, const std::vector<unsigned char>& vchSig)
0383     {
0384         if (vchSig.size() != 65)
0385             return false;
0386         if (vchSig[0]<27 || vchSig[0]>=31)
0387             return false;
0388         ECDSA_SIG *sig = ECDSA_SIG_new();
0389         BN_bin2bn(&vchSig[1],32,sig->r);
0390         BN_bin2bn(&vchSig[33],32,sig->s);
0391 
0392         EC_KEY_free(pkey);
0393         pkey = EC_KEY_new_by_curve_name(NID_secp256k1);
0394         if (ECDSA_SIG_recover_key_GFp(pkey, sig, (unsigned char*)&hash, sizeof(hash), vchSig[0] - 27, 0) == 1)
0395         {
0396             fSet = true;
0397             ECDSA_SIG_free(sig);
0398             return true;
0399         }
0400         return false;
0401     }
0402 
0403     bool Verify(uint256 hash, const std::vector<unsigned char>& vchSig)
0404     {
0405         // -1 = error, 0 = bad sig, 1 = good
0406         if (ECDSA_verify(0, (unsigned char*)&hash, sizeof(hash), &vchSig[0], vchSig.size(), pkey) != 1)
0407             return false;
0408         return true;
0409     }
0410 
0411     // Verify a compact signature
0412     bool VerifyCompact(uint256 hash, const std::vector<unsigned char>& vchSig)
0413     {
0414         CKey key;
0415         if (!key.SetCompactSignature(hash, vchSig))
0416             return false;
0417         if (GetPubKey() != key.GetPubKey())
0418             return false;
0419         return true;
0420     }
0421 
0422     // Get the address corresponding to this key
0423     CBitcoinAddress GetAddress() const
0424     {
0425         return CBitcoinAddress(GetPubKey());
0426     }
0427 
0428     bool IsValid()
0429     {
0430         if (!fSet)
0431             return false;
0432 
0433         CSecret secret = GetSecret();
0434         CKey key2;
0435         key2.SetSecret(secret);
0436         return GetPubKey() == key2.GetPubKey();
0437     }
0438 };
0439 
0440 #endif